

TURNING A LIABILITY INTO AN ASSET: Can we use the invasive apple snail Pomacea maculata in biomonitoring of metal contamination in freshwater marshes?

Sanjana Banerjee, Paul Klerks, Harry Whitlow, Naresh Deoli, Henry Udeogu

12th International Symposium on Biogeochemistry of Wetlands, April 26th, 2018

The Bayou State

- Louisiana coastal wetlands being lost at a very rapid rate
- Freshwater diversions from the Mississippi River for marsh restoration
- Metal contamination in marshes from Mississippi River input and local agricultural and industrial activities
- Contamination often most severe in sediment

US Army Corps of Engineers Image (http://commons.wikimedia.org/wiki/File:Atchafalaya_River_delta.j pg)

Pomacea maculata

- In Family Ampullariidae includes largest freshwater snails
- Native range: Large areas of South America (CABI Invasive Species Compendium)
- Bioinvader (like zebra mussel and nutria)
- Limited to fresh and oligohaline waters in warmtemperate to tropical climates
- Combination of a branchial respiration system

Pomacea introduction in the United States

- Alabama, Georgia, Florida, Louisiana, Mississippi, North Carolina, South Carolina and Texas
- Earliest genetically confirmed specimen of *P. maculata in* Tallahassee, Florida
- 2006 in Verret Canal in Gretna, Louisiana

Introduction and its consequences

- Apple snails are known agricultural pests, feeding on rice crops and causing great economic damage
- Known to be a carrier of the rat lungworm parasite (Angiostrongyliasis sp.)
- This talk: positive consequences in ecotoxicology?

Use in biomonitoring?

- Sedentary lifestyle
- Wide range of abiotic tolerances
- High metal accumulation rates

Make *Pomacea* a suitable candidate for use in biomonitoring of freshwater metal contamination

Pomacea in ecotoxicology

- Alter the biogeochemical cycling and fate of metals?
- Ecotoxicological consequences of metal pollution in freshwater environments
- Biomonitor for environmental contaminants- heavy metals such as copper (Cu), cadmium (Cd) and lead (Pb)

Topics

• Bioaccumulation- tissue distribution of Cu

- Snail tissue [Cu] reflecting environmental [Cu]?
- Shell and operculum- assess their potential use

Collection site

Metal levels in areas along the Gulf Intracoastal Waterway in Lafourche and Terrebonne Parishes exceed statewide limits

Bayou Black, Gibson, LA

Laboratory component

- Snails were maintained in water at a range of copper (Cu) levels (low, medium, high) for 10 days
- Metal levels were quantified in their gills, lung, kidney, gut, digestive and reproductive glands
- Brief depuration time (generally 24–48 h) in clean water was allowed prior to analysis

Quantification by atomic absorption spectrophotometry (AAS)

Fig- Differential Cu concentrations in tissues

Topics

- Bioaccumulation- tissue distribution of Cu
- Snail tissue [Cu] reflecting environmental [Cu]?
- Shell and operculum- assess their potential use

Cu pathways

Cu concentrations in snail and sediment at Gibson and Thibodeaux

Topics

- Bioaccumulation- tissue distribution of Cu
- Snail tissue [Cu] reflecting environmental [Cu]?
- Shell and operculum- assess their potential use

Accelerator at the Louisiana Accelerator Center

Micro Particle Induced X-Ray Emission (PIXE) will provide information on patterns of accumulation of lead?

MeV ion microscope for MicroPIXE

PIXE spectra- Operculum nucleus, High concentration

Pb concentrations in shell and operculum

Conclusions

- Cu accumulation in *Pomacea* differs among tissues; highest in digestive gland
- Pomacea tissue levels seem to best reflect Cu environmental levels in sediment
- Hard tissues (corneous operculum and shell) of *Pomacea* may be used with micro-PIXE for studying Pb pollution in tropical and sub-tropical wetland environments

Acknowledgement

- Department of Biology, University of Louisiana at Lafayette
- Department of Physics, University of Louisiana at Lafayette
- Louisiana Accelerator Center
- Institute of Coastal and Water Research for research funding
- Graduate Student Organization and Student Government Association for conference funding
- Louisiana Department of Wildlife And Fisheries for the scientific collecting permit

- Advisory committee- Paul Klerks, Jacoby Carter, Lewis Deaton
- Harry Whitlow, Naresh Deoli, Henry Udeogu
- Scott Duke Sylvester for statistical assistance
- Alex Kascak, Marco Franco, Noman Siddiqui, Sabrina Tabassum-Tackett, Trey Guilbeaux, Nihar Deb Adhikary

THANK YOU